miércoles, 19 de enero de 2011

Tecnologia Wi-Fi

Wi-Fi (Wireless Fidelity) es la tecnología utilizada en una red o conexión inalámbrica, para la comunicación de datos entre equipos situados dentro de una misma área (interior o exterior) de cobertura.

Conceptualmente, no existe ninguna diferencia entre una red con cables (cable coaxial, fibra óptica, etc.) y una inalámbrica. La diferencia está en que las redes inalámbricas transmiten y reciben datos a través de ondas electromagnéticas, lo que supone la eliminación del uso de cables y, por tanto, una total flexibilidad en las comunicaciones.

De entre todos los tipos de redes inalámbricas, son las redes inalámbricas IEEE 802.11b las que son conocidas como Wi-Fi (Wireless Fidelity), debido a su amplia difusión en el mercado. Los productos y redes Wi-Fi aseguran la compatibilidad efectiva entre equipos, eliminando en los clientes las dudas que puedan surgir a la hora de comprar un nuevo terminal.

El Wi-Fi no es, sin embargo, una alternativa a una red convencional, sino que es una nueva tecnología que viene a complementar a aquellas. Ambas redes (inalámbricas y de cables) ofrecen las mismas expectativas de comunicaciones (compartir periféricos, acceso a una base de datos o a ficheros compartidos, acceso a un servidor de correo, navegar a través de Internet, etc.).

En una red inalámbrica cada ordenador dispone de un adaptador de red inalámbrico. Estos adaptadores se conectan enviando y recibiendo ondas de radio a través de un transceptor (transmisor-receptor), que puede situarse en cualquier lugar, interior o exterior, dentro del área de cobertura, sin la preocupación del cableado.

Las redes inalámbricas permiten la transmisión de datos a velocidades de 11 Mbps o incluso superiores, lo que proporciona rapidez suficiente para la mayoría de las aplicaciones.

Se puede decir que el entorno Wi-Fi es la solución idónea que unifica movilidad y conectividad en la transmisión de datos, ofreciendo una nueva posibilidad de "oficina móvil", se esté donde se esté.

 

Las moscas permitirán mejorar el diseño de las redes inalámbricas

Según apunta una investigación llevada a cabo por la Universidad estadounidense de Carnegie Mellon en Pittsburgh, el sistema nervioso de la mosca podría ayudar a mejorar el diseño de las redes inalámbricas. Los investigadores se han inspirado en la forma en la que la mosca de la fruta organiza sus diminutas estructuras similares a los pelos para sentir y escuchar el mundo para mejorar el diseño de aplicaciones de computación distribuidas.

Las células del sistema nervioso de la mosca se organizan de modo que un pequeño número de ellas funcionen como líderes para proporcionar conexiones directas con distintas células nerviosas. Los investigadores han desarrollado la misma clase de esquema para redes informáticas distribuidas que desarrollan tareas cotidianas como las búsquedas en internet o el control de un avión en vuelo. Pero el método que la evolución ha brindado al sistema nervioso de la mosca para organizarse es mucho más simple y más contundente que cualquiera de los elaborados por los humanos.

Los investigadores utilizaron la información sobre las moscas de la fruta para diseñar un algoritmo informático distribuido y descubrieron que tiene cualidades que lo hacen particularmente adaptable a las redes en las que el número y posición de los nodos no está completamente establecido. Entre estas redes se incluyen los sensores sin cables, como los del control ambiental, en las que los sensores están dispersos en un lago o una vía de agua, o en sistemas para el control de grupos de robots.

En el mundo de la computación, un paso hacia la creación de sistemas distribuidos es encontrar un pequeño grupo de procesadores que puedan utilizarse para comunicarse rápidamente con el resto de procesadores de la red, lo que los teóricos denominan un conjunto independiente máximo (CIM). Cada procesador en la red es un líder, miembro del CIM, o está conectado a él, pero los líderes no están interconectados.

Una organización similar se produce en la mosca de la fruta, que utiliza diminutos bigotes para detectar el mundo exterior. Cada bigote se desarrolla a partir de una célula nerviosa, llamada precursor del órgano sensorial (POS), que conecta con células nerviosas cercanas, pero que no con otros POS.

Durante tres décadas los científicos se han preguntado sobre cómo los procesadores en una red pueden elegir los miembros del CIM. Durante las fases de larva y crisálida del desarrollo de la mosca, el sistema nervioso utiliza un método probabilístico para seleccionar las células que se convierten en POS.

En la mosca, sin embargo, las células no tienen información sobre cómo están conectadas entre sí. A medida que varias células se autoseleccionan como POS, mandan señales químicas a las células cercanas que inhiben a estas células de convertirse también en POS. Este proceso continúa hasta que todas las células son o POS o vecinas a una POS y la mosca emerge del estado de crisálida.

Según los investigadores, en la mosca la probabilidad de que cualquier célula se autoseleccione aumenta no como una función de conexiones, como en el algoritmo típico de CIM para las redes informáticas, sino como una función de tiempo. El método no requiere un conocimiento avanzado sobre cómo se organizan las células. La comunicación entre las células es tan simple como puede ser.

Los científicos crearon un algoritmo informático basado en el sistema de la mosca y probaron que proporciona una solución rápida al problema del CIM. En este sentido, los autores señalan que el tiempo de actuación era ligeramente superior al de los métodos actuales pero que el método biológico es eficiente y más robusto porque no requiere muchas asunciones, lo que convierte a la solución aplicable en muchas más aplicaciones.

martes, 18 de enero de 2011

Redes de Sensores Sin Cable

Una de las tecnologías que cambiarán el mundo según MIT Technology Review son las redes de sensores sin cable.

¿Qué son redes de sensores sin cable? Son redes de nano aparatos autónomos capaces de una comunicación sin cable y suponen uno de los avances tecnológicos más investigados en la actualidad. A través de redes de sensores, se puede integrar funcionalidades que antes eran independientes unas de otras, con el fin de lograr máxima eficiencia sobre todo en los campos de consumo y gestión de energía.

Las redes de sensores con cable no son nuevas y sus funciones incluyen medir niveles de temperatura, líquido, humedad etc. Muchos sensores en fábricas o coches por ejemplo, tienen su propia red que se conecta con un ordenador o una caja de controles a través de un cable y, al detectar una anomalía, envían un aviso a la caja de controles. La diferencia entre los sensores que todos conocemos y la nueva generación de redes de sensores sin cable es que estos últimos son inteligentes (es decir, capaces de poner en marcha una acción según la información que vayan acumulando) y no son limitados por un cable fijo.

Pero nuevos avances en la fabricación de microchips de radio, nuevas formas de routers y nuevos programas informáticos relacionados con redes están logrando eliminar los cables de las redes de sensores, multiplicando así su potencial.

Las redes de sensores pueden utilizar distintas tecnologías de sin cable, incluyendo IEEE 802.11, LANS sin cable, Bluetooth y identificación de la frecuencia de radio. Actualmente se trabaja con radios de baja frecuencia con un alcance de hasta 80 metros y velocidades de hasta 300 Kb/segundo.

Las últimas investigaciones apuntan hacia una eventual proliferación de redes de sensores inteligentes, redes que recogerán enormes cantidades de información hasta ahora no registrada que contribuirá de forma favorable al buen funcionamiento de fábricas, al cuidado de cultivos, a tareas domésticas, a la organización del trabajo y a la predicción de desastres naturales como los terremotos. En este sentido, la computación que penetra en todas las facetas de la vida diaria de los seres humanos está a punto de convertirse en realidad.

Aunque la tecnología relacionada con las redes de sensores sin cable está todavía en su primera fase, equipos de investigación en la Universidad de California Berkeley ya han fabricado una caja que se puede adaptar a muchos tipos de sensores. Los científicos utilizan los sensores sin cable para encontrar y controlar microclimas y plagas en plantaciones de uva, para estudiar los hábitos de aves y para controlar sistemas de ventilación y calefacción. En la Universidad de California Los Angeles, investigadores utilizan las redes de sensores sin cable para recibir información detallada sobre el efecto de los movimientos sísmicos en los edificios.

Si los avances tecnológicos en este campo siguen a la misma velocidad que han hecho en los últimos 2 años, las redes de sensores sin cable revolucionará la capacidad de interacción de los seres humanos con el mundo.